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Abstract
JavaScript is the most popular language on the web and is
a crucial component of HTML5 applications and services
that run on consumer platforms ranging from desktops to
phones. However, despite ample amount of hardware par-
allelism available to web applications on such platforms,
JavaScript web applications remain predominantly sequen-
tial. Common parallel programming solutions accepted by
other programming languages failed to transfer themselves
to JavaScript due to differences in programming models, the
additional requirements of the web and different developer
expectations.

In this paper we present River Trail — a parallel pro-
gramming model and API for JavaScript that provides safe,
portable, programmer-friendly, deterministic parallelism to
JavaScript applications. River Trail allows web applications
to effectively utilize multiple cores, vector instructions, and
GPUs on client platforms while allowing the web developer
to remain within the environment of JavaScript. We describe
the implementation of the River Trail compiler and runtime
and present experimental results that show the impact of
River Trail on performance and scalability for a variety of
realistic HTML5 applications. Our experiments show that
River Trail has a dramatic positive impact on overall perfor-
mance and responsiveness of computationally intense Java-
Script based applications achieving up to 33.6 times speedup
for kernels and up to 11.8 times speedup for realistic web
applications compared to sequential JavaScript. Moreover,
River Trail enables new interactive web usages that are sim-
ply not even possible with standard sequential JavaScript.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming — Parallel Program-
ming; D.3.2 [Programming Languages]: Language Classi-
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fications — JavaScript; D.3.4 [Programming Languages]:
Processors — Compilers

Keywords Parallelism; JavaScript

1. Introduction
The power wall has put a hold to the ever increasing growth
of processor frequencies, forcing hardware manufactures to
look for alternative ways to improve program performance.
Modern microprocessors for all form factors routinely fea-
ture multiple cores, vector instructions, and tightly coupled
graphics processing units. Parallel hardware has become a
commodity. In response, language extensions or APIs for
parallelism have emerged for most popular programming
languages, slowly pushing parallel programming into the
mainstream; however, one popular programming language,
JavaScript, the lingua franca of the web, has surprisingly es-
caped this trend and remains predominantly sequential.

JavaScript has long outgrown its original use as a light-
weight scripting language for web pages [2]. Increasingly, it
is used for large scale applications that have as big a poten-
tial to benefit from parallel execution as any other client-side
application. In combination with HTML5 [4], JavaScript is
the sole universally supported programming environment for
browser-based web applications; it is also emerging as a full-
scale software development stack for stand-alone applica-
tions, especially in the mobile space [20]. HTML and Java-
Script applications are rapidly gaining access to the capa-
bilities traditionally reserved for native applications, such as
fast 2D and 3D graphics, offline storage, video and audio
content, camera capture and geo location, to name just a few.

With these new capabilities come new usages and appli-
cation scenarios, of which many quickly outgrow the per-
formance envelope offered by the current, sequential Java-
Script implementations. In the context of 3D graphics, op-
erations like skinning for character animation, collision de-
tection for gaming or simulation of particle systems come
to mind. Access to the camera built into a user’s device en-
ables new applications from in-browser video conferencing
to novel ways of human device interaction. In both scenarios,
processing the video stream in (near) real time is essential.
Fast 2D rendering enables new forms of data visualization,
which, in particular in combination with large data sets, re-
quire speedy layout computations. For these and many yet
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to be conceived applications, access to parallel hardware and
its promised performance gain will be required to realize the
web platform’s full potential.

The open web has a unique combination of requirements
that preclude the use of existing parallel programming APIs.
First is the hard requirement of safety and security. In con-
trast with most platforms, the user has little control over
what code is executed in the browser. Applications are run
by simply visiting a web page. Introducing additional mal-
ware attack surfaces is simply not an option. Second is the
web developer community’s demand for a single familiar
programming model that builds upon the knowledge and
tools the developers already possess. In particular, program-
mers have grown used to deterministic program behavior,
which is typically undermined by concurrent programming.
Third is the need to support a wide range of form factors
and hardware architectures. A parallel programming model
has to be generic enough to support multi-core CPUs, vec-
tor instruction sets, and programmable GPUs from a single
source base. This requires a higher level of abstraction than
commonly found in existing APIs. Finally, for the model to
be successful, it should be capable of extracting dramatic
performance improvements from the available parallel hard-
ware.

In this paper we present River Trail, our vehicle to ex-
plore the design space for a parallel programming API that
addresses those four challenges. We have used the same lan-
guage and API design model that HTML5 and JavaScript are
successfully applying to move the web forward: rapid pro-
totyping of APIs and a lively language designer/application
developer feedback cycle. To enable the former, we have im-
plemented River Trail as a sequential library on top of Java-
Script that runs in all modern browsers. This allowed us to
quickly evolve the API with minimal development overhead
while covering most client systems. We also implemented a
prototype compiler on top of OpenCL to be able to evaluate
our design against the fourth requirement: performance. At
the same time, we have gathered as much developer feed-
back as possible. We have developed our prototype in the
open on GitHub1 to give developers early access. We also re-
cruited a group of developers ranging from college students
to professional web developers to gather early feedback dur-
ing the design of the API. This helped us particularly in ad-
dressing the second challenge: providing a comfortable API.

Another advantage of involving developers early on is
that it helped seed our set of benchmarks. Bringing par-
allelism to the web is not an incremental change. Instead,
we aim to change the way users experience web applica-
tions. Existing benchmark suites such as SunSpider, V8 and
Kraken do not reflect real web applications [26] and web
applications are typically well tuned to stay within avail-
able performance characteristics. Instead, our benchmarks,
including for instance real time video processing, motion

1 http://github.com/RiverTrail/RiverTrail

tracking and game physics, look at applications that are not
possible in browsers today. The more recent Octane suite
consists of programs taken from V8 and several other pro-
grams that have been compiled from C/C++ to JavaScript.
We believe that these programs do not represent how Java-
Script is actually used by programmers for developing web
applications either - the applications we consider are all de-
veloped in JavaScript.

Our design has converged on an API2 centered around
a single new data type ParallelArray as a basic abstraction
for parallel computation, accompanied by six methods that
implement well known parallel patterns: map, reduce, scan,
scatter and filter. The ParallelArray API provides the high-
level of abstraction necessary to support multiple platforms
and hardware parallelism flavors, such as multiple cores,
vector instructions and GPU executions. Our API provides
deterministic parallelism for the majority of programs. We
guarantee deterministic execution equivalent to a sequen-
tial execution except for scan and reduce operations that use
non-commutative or non-associative operations. This level
of determinism is similar to that of Google’s map-reduce
programming model [9] and seems to be an acceptable trade
off well received by programmers. Finally, our API trivially
provides the same level of safety and security as JavaScript
because it stays within the boundaries of the same program-
ming language.

We have evaluated our API with multiple web appli-
cations that demonstrate realistic usage scenarios such as
web-based gaming, real-time video effect filtering and 3D
computer animations, and several kernels. Most applications
were developed by external parties. Our experiments show
that River Trail is capable of delivering an order of magni-
tude performance improvement on an off-the-shelf system
for a realistic web application, and even larger, up to 33.6x
times, performance improvements for fully parallelized ker-
nels. These speedups are sufficiently large that they not only
improve the quality of user experience (e.g., less jitter while
applying a video effect) but also enable applications that are
simply performance infeasible without River Trail, such as
Bugs — an interactive gesture based browser game. River
Trail, thus, delivers on our objectives: a simple programming
model with dramatic performance improvements.

The rest of this paper is organized as follows. Section 2
describes River Trail language design and APIs. Section 3
presents the implementation of the River Trail prototype.
Section 4 presents the experimental results. We describe the
related work in Section 5 and conclude in Section 6.

2. Language Design
River Trail was designed from ground up to meet the re-
quirements of the open web. To fulfill the web’s safety re-

2 We have further distilled our results into Parallel JavaScript [15], a pro-
posal for a parallel programming API put in front of the ECMA TC39 com-
mittee, which is tasked to evolve the JavaScript standard.
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quirements, we have designed River Trail to enable the use
of the same safety mechanisms that typical JavaScript im-
plementations use. This includes, for instance, the absence
of pointers, bounds checked array accesses, and automatic
heap management.

River Trail also makes use of high-level parallel patterns
which we believe are a requirement to enable platform porta-
bility. Like JavaScript, we refrain from exposing device spe-
cific types and use a generic number type instead.

Last but not least, River Trail puts ease of use over per-
formance. Designing for web developers’ productivity for
us meant two things: Reducing the likelihood of program-
mer errors and keeping the annotation burden due to paral-
lelism low, both while achieving performance at an accept-
able level. The next two sections elaborate on our approach.

2.1 Concurrency Model
Various programming models aim to harness the concur-
rency available in modern hardware. Shared memory mod-
els commonly found in languages like Java, C# or C++ use
mutation of global state as means for communication be-
tween concurrent threads. Such models come with a host
of programming hazards such as complicated memory mod-
els, data races, dead lock and live lock. These concepts were
deemed sufficiently dangerous to the web development com-
munity that they were rejected outright as a non-starter for
language design.

On the other hand, Actors and other message passing
based programming models and languages segregate both
computation and data and use messages to communicate.
Some of the better known examples include Actors and Er-
lang. HTML5 also adopted this approach in the form of web
workers. They were designed for offloading of computations
to hide the latency of long running operations. Message pass-
ing approaches in general, but web workers in particular suf-
fer from a high cost of communication.

Finally functional languages generally discourage muta-
tion of state. Instead, computations typically produce a fresh
state, which may then be safely shared. However, such an
approach is also not a perfect fit due to the object-oriented
nature of JavaScript and the performance necessity to mutate
state.

In River Trail, we adopt a compromise: In the spirit of
functional programming, our model allows spawned tasks
immutable access to their parent’s state thus ameliorating the
need to pass messages or call by value. In contrast to a purely
function design, siblings are free to allocate and mutate their
local heap. However, they cannot communicate with each
other. This approach ensures safety while keeping runtime
overheads low.

It is important to note here that the parent thread is sus-
pended while its children are running and it therefore cannot
mutate its own local state. Therefore, from the childrens per-
spective, the global state does not change. However, once all
children have completed and the parent thread resumes, it is

free to mutate its own local state. Ultimately, during sequen-
tial execution, the entire heap is mutable, which corresponds
to the current JavaScript heap model. We call this approach
temporal immutability.

2.2 API
River Trail provides a data-parallel API using the concept
of parallel array as a fundamental abstraction of parallel
computation. The API is built out of three components:
a new data type ParallelArray, a set of parallel methods
that specify the computation pattern and the concept of an
elemental function that specifies the computation performed
on each parallel array element. Figure 1 shows a simple
example of a River Trail computation. A pair-wise addition
is performed by calling the map method. It takes as an
argument an anonymous elemental function that computes
a sum of two values.

The ParallelArray type features a minimalistic API sum-
marized in Table 1. ParallelArray objects consist of scalar
values (single or double-precision floating point values or in-
tegers). ParallelArray objects can be created either from ex-
isting array-like data structures (such as, for example, Java-
Script Array objects, another ParallelArray or HTML5 typed
arrays) or by using the comprehension constructor, as illus-
trated in lines 2-3 of Figure 2. Here, the ParallelArray ones
is computed as a vector of length a.length containing the
values returned by the elemental function passed as a sec-
ond argument of the constructor — in this case all ones.

A ParallelArray’s elements can be processed using one of
the six fundamental methods: map, combine, reduce, scan,
filter and scatter. Map, reduce, scan and filter methods have
standard data-parallel semantics. Combine is similar to map,
except that it exposes the current index to the elemental
function. The scatter method distributes elements from the
ParallelArray into a new ParallelArray according to a given
sequence of indices (akin to NESL’s permute operation).
River Trail’s scatter, unlike the classical version, is mostly
deterministic. In the situation when multiple values scatter to
the same memory location, they are combined using a spe-
cial conflict resolution function, which is passed to scatter as
an argument. In case of a conflict with no conflict resolution
function specified, scatter throws an exception. This guaran-
tees deterministic execution of scatter, provided the conflict
resolution function is commutative and associative. Because
of this additional functionality, scatter effectively acts like
a reduce from the map-reduce programming paradigm [9].
This usage scenario is illustrated in Figure 2, where a his-
togram of a ParallelArray’s elements is computed by apply-
ing scatter to an array of all ones with addition as the conflict
resolution function.

ParallelArray objects are immutable, i.e., once they have
been created, their values can no longer be changed. Instead,
operations on ParallelArray objects return a freshly minted
ParallelArray (except for reduce, which returns a scalar).
This restriction fits well with the overall programming model
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Constructors:
Signature Creates

ParallelArray(); An empty ParallelArray
ParallelArray(arr); A ParallelArray from an Array-like object arr
ParallelArray(pa1, pa2, ..pan); A ParallelArray object of shape 〈n, shape(pa1)〉
ParallelArray(s, f , ...args); A ParallelArray of length s from a comprehension of f
ParallelArray([s0, s1, ..], f , ...args); A ParallelArray of shape 〈s0, s1, ..〉 from a comprehen-

sion of f

Methods:
Name Signature Elemental Function

Map map(f , ...args∗) f(p0, ...args)
Combine combine(s∗, f , ...args∗) f(index , ...args)
Reduce reduce(f , ...args∗) f(p0, p1, ...args)
Scan scan(f , ...args∗) f(p0, p1, ...args)
Scatter scatter(indices, defaultvalue∗, f∗, length∗) f(p0, p1)
Filter filter(f , ...args∗) f(index , ...args)
Flatten flatten()
Partition partition(s)

Table 1: The ParallelArray API. A ∗ indicates optional arguments. f denotes a function object, s and si are scalars, pai is a
ParallelArray object and pi is either a scalar or a ParallelArray object. shape(pai) returns a shape vector denoted by 〈〉 that
describes the number of elements in each dimension of pai. A shape vector is always flat i.e., its elements are scalar values.
For a detailed description of the API we refer the reader to the language specification at [14].

and allows us to perform optimizations, such as using a more
efficient flat storage layout.

Note that our API does not feature many methods com-
monly found in other data-parallel languages, such as add,
sum, prefixSum or gather. This minimalistic approach al-
lows us to minimize the size of the compiler implementation,
focus the language’s design on the fundamental issues and,
consequently, minimize the length of the re-design develop-
ment cycle. Other methods can be easily implemented on top
of our API as a JavaScript library. For example, sum can be
implemented via reduce, while gather can be implemented
via the comprehension constructor. In principle, we could
have gone even further, and eliminate, map and combine, as
both of these methods can also be expressed by means of the
comprehension constructor. We include them nonetheless, as
programmers expect built in map operations.

Elemental functions are essentially arbitrary JavaScript
functions with the restriction that they may not mutate global
state. Elemental functions are, thus, side-effect free. Elemen-
tal functions may mutate local state and access shared global
state in a read-only fashion. It is the responsibility of the
implementation to detect, possibly conservatively, a global
state mutation and reject the execution of the corresponding
ParallelArray method by throwing an exception. As elemen-
tal functions are side-effect free, the exception can be thrown
at any point of the ParallelArray method execution cycle.
This gives the implementation the flexibility to detect viola-
tions during either just-in-time compilation or at run time.

River Trail’s programming model guarantees determinis-
tic execution of map, combine and filter methods, equivalent
to any sequential execution of these methods. This fact is a
direct consequence of elemental functions being side-effect
free. Reduce, scan and scatter are deterministic as long as
their elemental or conflict resolution functions are commu-
tative and associative. Otherwise, their execution is equiva-
lent to some sequential execution. This trade-off is similar to
that of the map-reduce programming model and seems to be
well accepted by programmers.

While requiring both commutativity and associativity for
guaranteed deterministic execution seems restricitive from
a programmers perspective, it imposes the least constraints
on concurrent implementations of reduce, scan and scatter.
Such flexibility is particularly beneficial during prototyping
and design space exploration. Yet, the current semantics also
allow for refining the API in future versions by, e.g., lower-
ing the requirements to just associativity, without breaking
exisiting code,

River Trail naturally supports nested ParallelArray ob-
jects, i.e., ParallelArray objects whose elements are also
ParallelArrays. It also supports generic n-dimensional pro-
gramming inspired by languages like APL [16]. A Parallel-
Array object may encapsulate multiple dimensions and we
consistently use index vectors instead of scalar indices in our
API. As selection in JavaScript is based on scalars, we have
added the get method that implements vector based selec-
tion.
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 function add(a, b) {

 return a.map(function(e1, e2) {return e1 + e2;},

 b);

 }

Figure 1: Pair-wise addition in River Trail.

 function histogram(a) {

 var ones = new ParallelArray(a.length,

 function(i) {return 1;});



 return ones.scatter(a, 0,

 function(e1, e2) {return e1 + e2;});

 }

Figure 2: Histogram in River Trail.

Unlike a nested ParallelArray object, a multi-dimensional
ParallelArray object is restricted in its shape: For each di-
mension, all elements have to have the same length. This al-
lows us to encode a ParallelArray object’s shape in a single
vector of extents, available to the programmer via the get-
Shape method. flatten and partition methods serve to change
the dimensionality of multi-dimensional ParallelArray ob-
jects.

Figure 3 shows a straight-forward implementation of ma-
trix matrix multiplication written using two-dimensional
ParallelArray objects. The example uses a two-dimensional
combine operator to compute each element of the resulting
matrix in parallel, as implemented by the elemental function
matMultElement. Line 12 shows the corresponding method
call. The first argument to combine is the number of dimen-
sions to iterate — in this case two, so that the elements to
consider will be scalar values. Note that the elemental func-
tion, defined on Line 1, expects two arguments: the index
and the second array B. A typical JavaScript program would
simply use the closure bound B from the surrounding scope
instead. However, due to the restrictions of our prototype im-
plementation, we cannot support closure bound variables in
elemental functions. JavaScript does not provide a reflection
API to access the bindings of a function’s closure. While
this is a reasonable design choice in general, e.g., to ensure
encapsulation, it prevents our prototype compiler, which is
written in JavaScript, from reasoning about closure bound
variables. A deeper embedding into the JavaScript runtime
and just-in-time compiler would certainly provide access to
closures but at the cost of a more complex implementation.
Instead, we have chosen to adapt our API in the prototype
and use the notion of extra arguments: All arguments follow-
ing the second one in combine are directly passed through
to the elemental function for iteration. We expect a product-
quality implementation to use an API tailored towards clo-
sure bound variables, instead.

3. Implementation
Our prototype consists of three major building blocks as de-
picted in Figure 4. First, we have written a JavaScript library

 function matMultElement(index, B) {

 var i = index[0]; var j = index[1];

 var sum = 0; var len = this.getShape()[1];



 for(var k = 0; k < len; k++) {

 sum += this.get([i, k]) * B.get([k, j]);

 }

 return sum;

 }



 function MatrixMultiply(A, B) {

 return A.combine(2, matMultElement, B);

 }

Figure 3: Naı̈ve implementation of Matrix Multiply in River
Trail.
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Figure 4: Design of the prototype implementation (River
Trail components in bold)

that implements the ParallelArray API on top of JavaScript.
Additionally, we implemented support for parallel execution
for the Firefox browser, consisting of a compiler from Java-
Script to OpenCL [21] and an OpenCL binding for Firefox.

Our library implementation is portable across modern
browser engines and provides sequential execution for code
using the River Trail API. Much care has been taken to
implement the same semantics as in the compiled parallel
mode. However, to make the use of River Trail practical
in sequential code, we have prioritized performance where
need be.

The sequential implementation is based on JavaScript’s
typed arrays — C like one-dimensional arrays that are laid
out continuously in memory. By default the sequential li-
brary uses Float64Array arrays, but programmer annota-
tions can specify other array types such as Float32Array.
This enables direct interfacing with existing HTML5 APIs
like WebGL or canvas and also simplifies the implementa-
tion of our parallel runtime (cf. Section 3.2). As typed ar-
rays are one-dimensional, we had to implement nesting and
n-dimensional indexing on top of the flat data storage. We
do this by wrapping the typed array object into our own
ParallelArray object and implementing the index conver-
sions in the get method. To reduce runtime overheads, we dy-
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namically specialize the implementation of get to the dimen-
sionality of the array. We also implemented regular Java-
Script indexing with [] operations by intercepting property
lookup using JavaScript’s proposed proxy feature. However,
runtime overheads turned out to be intolerable. Therefore,
the library, unlike the compiler, does not support direct in-
dexing.

The sequential library also implements all parallel meth-
ods, albeit in sequential versions. We do not check for side
effects of elemental functions in the library implementation,
nor do any of the limitations of the compiler apply. How-
ever, we do enforce homogeneity and shape constraints on
the computed ParallelArray objects. If a result does not com-
ply, we gracefully fall back to nested JavaScript arrays to en-
able debugging. However, performance significantly suffers
in those cases.

Parallel execution is enabled by our compiler. It is in-
voked by the sequential implementation in case of the com-
prehension constructor and the map and combine meth-
ods. When such a method is called, we dynamically check
whether the compiler is present and was successfully initial-
ized. If both conditions are met, we pass control to the com-
piler which translates the elemental function into an OpenCL
kernel function. On successful compilation, the generated
kernel is executed using the OpenCL runtime binding. We
then transform the result into a new ParallelArray object and
resume sequential execution. On failure or if the compiler is
not present, we fall back to the sequential implementation.

Using OpenCL as the underlying runtime and compila-
tion backend allows us to target different hardware plat-
forms, like multi-core CPUs and programmable GPUs, from
various vendors without investing into dedicated compila-
tion support for each target. While this significantly eases
the implementation of a portable runtime, it also comes with
a range of challenges.

Firstly, JavaScript and OpenCL differ significantly from
a language perspective. Whereas the former is a dynami-
cally typed language aimed at designers and beginner pro-
grammers that abstracts from hardware specifics as much as
possible, the latter is a statically typed language from the C
family of languages designed for performance experts and
exposes many hardware specifics. A major part of our im-
plementation therefore is concerned with bridging this se-
mantic gap from dynamic to static and hardware agnostic to
hardware specific.

Secondly, River Trail employs a restricted shared mem-
ory programming model where all threads during concur-
rent execution have restricted read-only access to the global
heap. OpenCL on the other hand is based upon a distributed
memory model where data is only accessible during concur-
rent execution if it has previously been explicitly mapped.
Thus, our implementation has to infer the correct mapping
and manage the communication.

Lastly, OpenCL and its runtime use explicit memory
management in the spirit of C, where all data structures
are explicitly allocated and, more importantly, have to be
explicitly freed. JavaScript, on the other hand, uses a fully
managed runtime and employs garbage collection to free
unused resources. This poses two problems: In code that
we translate to OpenCL, we have to convert JavaScript’s
implicit allocations to explicit allocations in OpenCL. This
is complicated further by the lack of per-thread heaps in
OpenCL. Another challenge in this context is to ensure that
the lifetime of memory allocated in OpenCL covers what is
required by the semantics of the translated code. The second
issue arises in the implementation of the actual runtime. As
the lifetime of heap allocated objects in JavaScript is ulti-
mately determined by the garbage collector, we have to keep
the state of the OpenCL runtime alive until the garbage col-
lector of the JavaScript runtime signals that it is no longer
needed. OpenCL runtimes are typically not optimized for
the resulting deallocation patterns, leading to intolerable
garbage collection latencies. The design of our embedding
of OpenCL into the Firefox browser takes this into account.

In the following, we describe our solutions to the above
challenges and discuss the design decisions involved.

3.1 Translating JavaScript to OpenCL
We have not aimed at writing a general purpose compiler
for JavaScript to C like languages. Instead, the development
of our compiler was largely driven by use cases and the as-
sociated developer feedback. It is geared towards numeri-
cal codes and only supports those language features that are
typically required in that setting. In particular, our prototype
does not support

Closure bound variables As discussed earlier, supporting
closures would require a deeper integration into the Java-
Script engine.

User thrown exceptions Using throw triggers a fall back to
the sequential implementation. For exceptions thrown by
the JavaScript runtime or supported library functions, we
ensure that concurrent execution is aborted and switch to
sequential execution to produce the actual exception.

Objects Exceptions are array objects and special objects
like the Math object whose methods provide essential
arithmetic operations required for numerical workloads.
We also support the use of objects as records in limited
contexts.

Value polymorphism In order to be accepted by our proto-
type compiler, variables need to refer to data of the same
type throughout their lifetime. This is typically the case in
numerical workloads. Note, however, that functions may
be used polymorphically.

Strings We did not encounter a use case for strings in our
benchmark applications. As strings typically use imple-
mentations in today’s jit engine that trigger internal side
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Figure 5: Overview of compilation stages of our prototype
compiler

effects, we have deferred an implementation until the
need arises.

These restrictions aside, we have taken great care to ensure
that the semantics of the compiled code is in line with Java-
Script’s semantics.

The majority of restrictions mentioned above are due to
our prototype implementation and not a property of the pro-
gramming model itself. By embedding the compiler deeper
into the JavaScript engine, most of the above functional-
ity can be implemented. A notable exception is objects, in
particular non-native objects like DOM nodes. As their se-
mantics are external to JavaScript, it is difficult to reason
about their side effects or even dynamically capture their be-
haviour. Native JavaScript objects, in contrast, have known
semantics and could be analyzed by the JavaScript compiler.
We will further discuss above limitations and their respective
reasons inline with the following description of the compiler.

The compiler itself is written in JavaScript and runs
alongside the programmer provided scripts. This brings two
benefits: Firstly, the compiler is portable across different
browser engines and thus only the runtime has to be adapted.
Secondly, embedding the compiler in the existing JavaScript
context gives us an easy way to intercept calls to Parallel-
Array methods and divert them to OpenCL execution in-
stead.

In principle, this would also work the other way round:
a malicious web site could intercept calls to the runtime
and inject some exploit code. This problem, however, is
not unique to the work presented here and in particular
Firefox, which itself is partially implemented in JavaScript,
offers means to prevent such attacks [10]. Although possible,
hardening our prototype compiler using those techniques is
outside the scope of this work.

Figure 5 gives an overview of the compiler stages. First,
as most compilers, we parse the elemental function into a
syntax tree using the parser from Mozilla’s Narcissus meta-

circular JavaScript interpreter3. We use JavaScript’s ability
to reflect the source of any function by calling the function
object’s toString method. Second, we annotate the syntax
tree with types. For this, we have implemented an inference
for a simple first-order type language with size information.
We reject programs that make polymorphic use of variables
and resolve function polymorphism by specialization. This
enables us to produce efficient OpenCL code without the
need for tagged data representations. We discuss details in
Section 3.1.1.

The type inference infers types only up to the JavaScript
level. It does not take OpenCL’s address spaces nor the
different number types in OpenCL into account. This gap
is closed in the following two stages.

During Address Space Propagation we compute address
spaces for all local variables. The parameters and return
value of an elemental function are always allocated in the
global address space, as they need to be accessible from
the JavaScript environment. All other variables are by de-
fault allocated in the private address space. However, to emit
valid OpenCL code, we have to prevent data from the global
heap to be referenced by variables from the private address
space and vice versa. To that effect, we forward propagate
the global address space along the data-flow graph, promot-
ing variables to the global address space where needed. Rare
conflicts where both private and global data flows to the
same local variable are resolved by copying the global data
into the private heap. Address spaces are computed for the
whole kernel including local functions. Consequently, up-
dates in address spaces may trigger further function special-
ization.

Beyond code generation, we also use the computed ad-
dress space partitioning to statically check for side effects
due to array updates. We enforce the constraint that only
local arrays may be mutated by checking that the updated
array was allocated in the private address space. This con-
dition ensures that no globally visible side effects are per-
formed. In the rare case that a global value was privatized to
resolve an address space conflict, we might allow an update
that would otherwise be illegal. However, due to privatiza-
tion, the generated code is still side effect free.

In a second stage, we introduce OpenCL specific types.
It often is beneficial to differentiate between Integers and
floating point values at runtime. Most JavaScript engines
implement support for 32 bit integers to that effect. To decide
whether a value would overflow a 32 bit Integer at runtime,
we next perform a range analysis (cf. Section 3.1.2). Apart
from computing ranges for all local variables, the analysis
also infers whether a variable is known to be integral. The
representation analysis stage then uses the information to
decide a global representation for each variable.

Next, we perform static memory allocation. OpenCL
does not provide thread local heaps nor allow dynamic allo-

3 Narcissus is available at https://github.com/mozilla/narcissus
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 __kernel void RT_matMultElement(__global double* opThis,

 __global double* RTl_B,

 __global double* retVal)

 {

 int _id_0 = get_global_id(0);

 int _id_1 = get_global_id(1);

 int _writeoffset = _id_1+1024*_id_0;

 double RTl_sum;

 int RTl_len;

 int RTl_k;



 RTl_sum = (double) 0;

 RTl_len = 1024;

 for (RTl_k = 0; (RTl_k<RTl_len); RTl_k++) {

 RTl_sum += opThis[RTl_k + 1024*id_0]

 * RTl_B[id_1 + 1024*RTl_k];

 }

 retVal[_writeoffset] = RTl_sum;

 return;

 }

Figure 6: Pseudo OpenCL code generated for Matrix Multi-
ply when applied to a 1024× 1024 matrix.

cation on the stack. Instead, only objects of statically known
size may be allocated using C99 style local arrays. Based on
the size information computed by type inference, we stati-
cally compute allocation sets. We use a path aware analysis
to reduce the pressure on the stack, i.e., we overlap alloca-
tions for different branches of conditionals.

As a last optimization, we eliminate bounds checks. In
JavaScript, all array accesses need to be bounds checked.
Our current implementation naı̈vely inserts two condition-
als for each array access. However, as we have precise size
information available from our type inference and also ap-
proximations of variable ranges, eliminating bounds checks
is straight-forward.

Finally, we emit OpenCL code. Figure 6 gives pseudo
code for a compilation of the Matrix Multiply example from
Figure 3 assuming a 1024 × 1024 matrix as input. As can
be seen, the code is structurally very similar to its JavaScript
counterparts. However, arrays are represented as pointers of
appropriate type. Note in particular the use of an Integer
induction variable and the absence of bounds checks in the
inner loop.

Before discussing our OpenCL runtime binding, we first
give more details on type and range analysis.

3.1.1 From Untyped to Typed
We use a straight-forward first order, monomorphic type sys-
tem. This allows us to directly map the untyped JavaScript
program to OpenCL without the need for boxed data repre-
sentations and value polymorphic code. Although JavaScript
code in general has been found to be very dynamic [27],
this seems not apply in the restricted setting of elemental
functions. In our experience, elemental functions focus on
computationally dense numerical operations, which do not
require polymorphism. Furthermore, our prototype only has

p ⇒ number | bool | string
a ⇒ array( ( a | p ) , n )

| parray( ( a | p ) , [ n [ , n ]* ] )

o ⇒ object( [ ( L , ( a | p ) ) ]* )

f ⇒ function( ( p | a | o )[ , ( p | a | o ) ]* )

Figure 7: Type language used for type inference. L is a set
of labels and n represents natural numbers.

limited support for method invocations, which is a signif-
icant source of polymorphism found in general JavaScript
code. Overall, these restrictions had a surpising little impact
on the actual JavaScript workloads we can compile.

We also include size information in our types, thereby
effectively performing a form of shape analysis at the same
time. Having precise shape information available allows us
to compute the size of all heap objects and thereby enables
static allocation.

We omit a formal discussion of the type system, as it
closely follows text book approaches [24]. To nonetheless
give the reader a flavor, we present the type language in Fig-
ure 7. p denotes the set of types for primitives as supported
by JavaScript. Note that, although our type language sup-
ports the string primitive, we do not have implemented
support for it in the backend. We also do not support the un-
defined or null value, thereby ensuring that each expression
produces an actual value.

We represent arrays by two flavors of array types a. The
first, array, is used for ordinary JavaScript arrays as well as
typed arrays. It has two parameters: the type of the elements
of the array and the length of the array. As this shows, we
require arrays to be homogeneous, i.e., all their elements
need to be of the same type, and their length needs to be
statically known. We allow ordinary JavaScript arrays to
be nested, i.e., the elements of such an array may be other
arrays.

Our second array type, parray, covers ParallelArray ob-
jects. It differs from the ordinary array type in that the length
parameter is a vector of numbers to be able to model multi-
dimensional ParallelArray objects. The main reason to use
two separate types lies in their different APIs. To correctly
resolve method calls, we need to know what kind of array
we are dispatching for.

Next, production rule o of our type language introduces
object types. For simplicity, we do not support objects be-
yond the two array types mentioned above. However, we in-
clude a limited form of nameless structural objects to sup-
port a JavaScript pattern commonly used to return multiple
values:

 function foo() {

 return {desc: "answer", value: 42};

 }

 var answer = foo().value;
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To be able to return two results from function foo, we
construct a nameless object in Line 2 that we use as a set
of name-value pairs. The calling context can then extract the
different result values using their name, as shown in Line 4.

Lastly, we have a function type. In our system, all func-
tions have to return a value, represented by the first parame-
ter, and may accept an arbitrary number of arguments. Note
here that we, unlike JavaScript, require the number of func-
tion parameters and arguments in a call to match. This lim-
itation, which has little impact on expressiveness, ensures
that no undefined values creep into our supported subset of
JavaScript.

For function types, monomorphism makes a difference.
Whereas JavaScript developers write monomorphic code
when it comes to values, they often write rather polymor-
phic functions. Having two array types further increases
the amount of polymorphism: Programmers typically write
helper functions on arrays only once. We solve this issue by
aggressive specialization for different primitive types, dif-
ferent array kinds (parallel vs. ordinary) and even different
array sizes. Whilst this potentially could lead to dramatic
code growth, our experience shows that the amount of spe-
cialization remains manageable. In the codes we studied,
typically only few different array sizes are used. Specializ-
ing for the two kinds of arrays can maximally double code
size but leads to less code duplication in practice.

3.1.2 Lightweight Range Analysis
We have implemented an abstract interpretation phase that
computes the lower and upper bounds for each expression
and whether it is guaranteed to evaluate to an integer value
at runtime. To support generic n-dimensional codes, our
analysis computes vector bounds for vector typed variables.
Certain expressions, like the index parameter of an elemental
function or integer constants, are known to be integer values
and seed the analysis. Bounds are propagated across a set
of arithmetic operations and derived from conditionals in
the usual way. Predicate expressions in loops, however, are
treated special.

To compute range information for loops, typically a trip
count is required to project the range of variables after the
loop exits. However, given our time constraints both in com-
piler runtime and development, we have opted not to im-
plement loop analysis. Instead we use abstract interpretation
directly. Consider the following loop:

 var i = 0; var s = 0;

 while (i <= 10) {

 s = s + A[i++];

 }

When evaluating the above code, we treat the loop pred-
icate i <= 10 not as a constraint like we do with ordinary
conditionals. Instead, we interpret it as upper bound for the
variable i. Thus, in the loop body, i has lower bound 0 de-
rived from the assignment in Line 1 and upper bound 10

derived from the loop predicate. For the above example, con-

tinuing the analysis with this information gives us the correct
bounds (i is assigned [0, 10] and s is assigned the unknown
bounds). However, in general, the loop predicate might not
be good enough to correctly predict all ranges if the loop
has further induction variables that are only indirectly con-
strained. Below is an example:

 var i = 0; var j = 0; var s = 0;

 while (i <= 10) {

 s = s + A[i++] * B[j++];

 }

After the first round of analysis, i is annotated with the
correct range as before, whereas j has range [0, 1], which
is incorrect. To detect these cases, we rerun the analysis
once more, taking the previous results into account. After the
second run, i still has the range [0, 10], as its upper bound is
constrained by the loop predicate. The range for j however
has changed to [0, 2], as the variable is not constrained. If we
detect such a situation, we invalidate the range information
of the corresponding variables and propagate an undefined
range instead.

As our analysis is monotonic, two iterations are sufficient
to detect variables with unconstrained ranges. If a bound in-
creased in the second iteration compared to the first, it will
further increase in the third iteration. Likewise, if a vari-
able’s range did not change in the second iteration, it will not
change in the third either. Furthermore, our inferred ranges
are accurate, i.e., if we are able to compute a variable’s
range, the computed range is always a superset of the ob-
served range at runtime. Although our analysis only covers
a subset of the loops that a full loop analysis would handle,
we have found it to be sufficient for the workloads we have
considered.

3.2 Integrating the OpenCL runtime with Firefox
All components of the prototype that we have described so
far are written completely in JavaScript and run fully in-
side the browser engine. However, to actually execute the
OpenCL kernel code that our compiler has generated, we
have to leave the browser and employ the help of an OpenCL
runtime. For this task we have implemented a lightweight
embedding of the OpenCL runtime into Firefox’s JavaScript
engine. Other than the rest of the prototype, this compo-
nent is written in C++. We use Firefox’s XPCOM binary
extension mechanism to load our extension into release ver-
sions of Firefox and the JSAPI interface to SpiderMonkey,
Mozilla’s JavaScript engine, to communicate with the Java-
Script world. Our implementation does not aim to provide a
full interface to OpenCL. Instead, we have tailored the API
to the needs of our River Trail implementation.

3.2.1 Runtime Optimizations
Our runtime implements a range of common optimizations
to reduce JIT and OpenCL runtime overheads. To increase
the portability of our runtime, we have aimed to implement
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as much of the required logic in JavaScript and keep the C++
component as small as possible.

To reduce the cost of just-in-time compilation, we cache
compiled kernels as long as the corresponding JavaScript
function object is alive. We realize this by exposing com-
piled kernels as JavaScript objects in our C++ interface and
attaching those kernel objects to the respective JavaScript
function object. By making compiled kernels explicit in the
runtime, we can reuse the existing garbage collection mecha-
nisms of the JavaScript engine. During finalization of a Java-
Script kernel object, we also free the corresponding OpenCL
data structure.

We use a similar approach to manage data transfers and
OpenCL heap mapping. Before data can be used by an
OpenCL kernel, it has to be explicitly mapped. Even though
hardware trends towards shared memory systems, mapping
data still imposes noticeable overhead. Therefore, a common
runtime optimization is to reduce transfers where possible.
We, too, have implemented a form of lazy materialization.
As before, the key technique is to expose mapped memory as
explicit JavaScript objects. This allows us to cache mapped
data by attaching the object that represents the mapping to
the JavaScript object that has been mapped. Again, lifetime
management is performed by the existing JavaScript garbage
collection. Note that we only cache ParallelArray objects, as
these are immutable and therefore guaranteed to remain con-
sistent with their mapped copy during their lifetime. Extend-
ing our approach to mutable objects would require some
form of consistency protocol that forwards changes to an
object from the JavaScript heap to the OpenCL heap’s coun-
terpart.

Our lazy materialization goes one step further: For kernel
results, we do not map the result back to the JavaScript heap
unless the value is actually read. We implement this in Java-
Script by replacing the data store of a ParallelArray object
with the object that represents the corresponding OpenCL
memory buffer. To ensure that the data is mapped on read,
we dynamically override all reading methods with special
implementations that first map the data back to the Java-
Script heap. Our implementation exploits the dynamic na-
ture of JavaScript, in particular the ability to add new meth-
ods to an object at runtime, thereby overriding methods in-
herited from the object’s prototype. To keep overheads low,
we reset those methods to their default implementation as
soon as the data has been mapped.

Reusing JavaScript’s existing garbage collection mech-
anisms to manage the lifetime of OpenCL runtime objects
has proven to be an efficient implementation strategy. How-
ever, a too naı̈ve implementation may show unexpected run-
time costs caused by the interplay of garbage collection and
OpenCL runtimes.

The OpenCL runtime, unlike JavaScript, uses explicit
memory management with reference counting. Under that
regime, memory is reclaimed as soon as the last reference to

it is surrendered. Consequently, an OpenCL runtime is typ-
ically tuned for single free operations that are intertwined
with overall program execution. Garbage collected runtimes,
on the other hand, free many objects at once whenever a col-
lection cycle is completed. In our prototype, this includes
the OpenCL runtime objects and their JavaScript represen-
tations. The resulting bursts of free requests result in signifi-
cant overheads of up to 200ms. In real time centric use cases
like video processing or 3D animations, such delays are very
noticeable.

To alleviate the effect, we have decoupled freeing the
wrapper objects from releasing the OpenCL runtime objects.
Instead, we now maintain a global free queue that contains
OpenCL runtime objects that are no longer needed. During
garbage collection, instead of calling the OpenCL API func-
tion to release an object, we simply add it to the free queue.
During certain points of execution, in particular all situa-
tions where new OpenCL runtime objects are allocated, we
inspect the queue and release a small amount of pending ob-
jects. Using this approach, we were able to reduce garbage
collection latency to 20ms, without otherwise noticeable ef-
fect on overall performance.

Last but not least, we have implemented memory align-
ment: In particular for vectorization on CPUs, data typically
has to be aligned in memory. OpenCL runtimes report this
alignment requirement at runtime. This allows implemen-
tations with explicit memory management to allocate heap
structures accordingly, typically by allocation a larger chunk
of memory and computing an offset to gain an aligned start
address. However, our shallow embedding does not allow us
to directly influence the allocator of the used JavaScript run-
time.

Instead, we exploit a feature of the typed array specifica-
tion: Typed arrays in JavaScript are defined as views over a
byte buffer, which can be allocated independently. In partic-
ular, the view may begin at an offset in the underlying buffer.
The last missing ingredient is a way to compute this offset.
This cannot be done in JavaScript, as JavaScript has no no-
tion of pointers and does not expose the address of objects to
the program. We have added this missing pointer reflection
mechanism in our C++ component.

3.2.2 Hybrid Execution
Using OpenCL as backend technology allows us to trans-
parently run River Trail workloads on the CPU and GPU.
Even more, we can also execute workloads on both devices
at the same time. To evaluate the benefits of such a hybrid
approach, we have implemented a simple static scheduler.
The basic idea is to map all read-only inputs, i.e., all kernel
parameters, to both the CPU and GPU devices. The work-
load distribution is determined by an offload factor specified
at runtime that determines the portion of the iteration space
that should be computed on each device. After this partition-
ing, computation proceeds as usual with each of the CPU
and GPU devices producing results into their own regions of
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the result buffers. After completion of execution on all de-
vices we map all sub buffers back to the host and return the
combined result.

4. Experimental Evaluation
We present an experimental evaluation of the River Trail
prototype compiler using several realistic web applications.
Specifically, we focus on the following aspects:

1. Performance and scaling on a modern CPU relative to
sequential JavaScript.

2. Performance impact of optimizations, specifically dy-
namic bounds check elimination and lazy materializa-
tion.

3. Performance on a modern integrated graphics unit
relative to sequential JavaScript with and without hybrid
execution.

All experiments were run using Firefox 16 on a machine
with an Intel Core i7-3770 CPU with 4 cores (8 hardware
threads) clocked at 3.4GHz and with 4GB of memory. This
machine also contains an Intel HD Graphics 4000 integrated
GPU with 16 execution units (each running 8 threads, for a
total of 128 threads) clocked at 650MHz and with 1.7GB of
shared memory.

4.1 Workload Selection
River Trail is a disruptive technology and as such no suitable
workloads exist. Today’s benchmarks like Sun Spider or the
V8 benchmark suite [30] focus on sequential performance
and are not representative of real web sites [26]. Even more,
current web applications are designed to run within the com-
putational envelope provided by today’s JavaScript engines
and thus are not very computationally intense.

To escape this chicken-and-egg problem, we have imple-
mented and sourced a range of workloads, summarized in
Table 2. Of these, 5 were developed by third parties who first
developed sequential versions and then ported them to the
River Trail API. These third parties included web designers,
professional developers, academic researchers as well as un-
dergraduate students. We believe that the set of applications
we have chosen is representative of emerging HTML5 ap-
plications and allows us a fair evaluation of River Trail’s po-
tential. Below, we briefly describe each of these workloads
and relate them to the performance speedups and scalability
shown in Figure 8.

4.2 Parallel Speedup
The chart in Figure 8 shows the impact of the number of
hardware threads on parallel speedups observed. The Y-axis
is the ratio of time taken for sequential execution and time
taken for River Trail execution. Note that the processor uses
hyper threading. Thus, bars labeled 2, 4, 6 and 8 hardware
threads correspond to runs on 1, 2, 3 and 4 cores, respec-
tively, with two hardware threads each. The bar labeled as 1

hardware thread, however, runs an exclusive hardware thread
on a single core. We attribute the reduction in speedup for 8
of 11 programs on two hardware threads compared to the ex-
ecution on a single hardware thread to hyper threading and
runtime effects. We rely on the OpenCL runtime to spawn
the right number of user threads and decide an efficient work
assignment. We therefore do not explicitly control nor know
the precise concurrency during execution. Aside from scal-
ability this chart also implicitly shows the contributions of
parallelism and code generation to parallel speedup.

The second chart in Figure 8 shows the impact of the op-
timizations described in Section 3. All bars show the rel-
ative speedup compared to a fully optimized version with
all optimizations described in Section 3 turned on - in the
discussion below, we refer to this optimized version as All-
Opts. The bars labeled NoLazyMaterialization show rela-
tive speedups when lazy materialization is turned off but
all the other optimizations are on. The bars labeled NoDy-
namicBoundsChecks show relative speedups when no dy-
namic bounds checks are emitted. These bars therefore il-
lustrate the performance speedup that can be achieved with
an ideal Range Analysis. Note that this artificial scenario is
used only for evaluating effectiveness of our RangeAnalysis
and is not an optimization itself. The bars labeled FullDy-
namicBoundsChecks show relative speedups with all array
selection operations guarded with checks. These bars there-
fore show speedup without any static Range Analysis.
TourDeBlock is a game application that features a rigid
body physics engine to simulate realistic collisions and
movement. The collision detection phase of the program
accounts for 50-60% of total execution time per frame. This
phase consists of two sub-phases Broadphase and Narrow-
phase each of which are made parallel using River Trail.
We observe a parallel speedup of around 2.84 (Figure 8a)
for the collision detection phase alone and 1.6 for the en-
tire application. The elemental functions for this workload
contain dense irregular control flow and as a result they do
not benefit from auto-vectorization. This program also does
not benefit from lazy materialization as the two parallel sub-
phases are separated by a sequential computation that reads
the results of the first sub-phase.
XML3D simulates an interactive walk-through of a virtual
museum in which the user views specific art installations.
The scene consists of several human characters that are made
of high-detail meshes and a bone and joint model for realistic
movement. These meshes are skinned and animated in real-
time, which is the most compute-intensive portion of this
application and takes up on average roughly 50-70% of
execution time per frame during sequential execution. With
these components parallelized using River Trail we measure
a speedup of 7.21 (Figure 8a) for the parallelized portion and
a speedup of roughly 2 for the whole application.
Video-* workloads are part of an in-browser video editor
application in which users apply various effects to a video
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Name Description SLOC # kernels Input Size % parallelized

TourDeBlock Real-time Physics engine 8824 2 250 bodies 55-60
XML3D Interactive Virtual Museum 15000 2 Mesh sizes 50-70
VideoEditor† Real-time filters on a video stream 1050 7 640x480 video stream 64-90
Matrix-Multiply† Dense Matrix Multiplication 30 1 1024 x 1024 >99
Nbody Particle simulation/animation 2035 2 4000 bodies 98
Liquid-resize† Content Aware image resizing 862 3 800x542 image 85
Bugs Interactive gestures based game 3300 10 640x480 video stream 97
OctreeCollider Octree based rigid body collision engine 2600 1 10000 bodies 85

Table 2: Summary of applications. Applications marked with † were developed by the authors and the rest by third parties.
SLOC refers to the total number of lines of JavaScript. % parallelized refers to the portion of execution time during sequential
execution in components that were targeted for parallelization using River Trail
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Figure 8: (a) Parallel speedup relative to plain sequential JavaScript versions and (b) the impact of optimizations on performance
- the bars show speedup without specific optimizations relative to execution with all optimizations turned on (using 8 hardware
threads in both cases)

stream. Video-Sepia, Video-EdgeDetect and Video-Sharpen
refer to the user applying sepia toning, edge detection and
image sharpening, respectively. Video-3D refers to the input
stream being transformed to stereoscopic 3D in real-time.
We observe speedups ranging from 0.87 (for Video-Sepia)
to 5.25 (for Video-EdgeDetect and Video-Sharpen). Lazy
materialization does not provide any improvement since the
results of the elemental functions are rendered to the screen
immediately after parallel execution. However, the static
range analysis is effective in eliminating bounds checks as
seen by the slowdown with FullDynamicBoundsChecks in
Figure 8b.

The slowdown for Video-Sepia in Figure 8a (in contrast
with the significant speedups for the other Video-* pro-
grams) is a consequence of two factors. Firstly, the amount
of work parallelized in Video-Sepia is relatively low, which
emphasizes overheads. Secondly, sepia can be computed in
place by the sequential implementation by directly updat-

ing pixel values of the original image buffer. River Trail’s
programming model does not allow for this. The other pro-
grams, however, cannot be performed in place due to loop-
carried dependencies.
Matrix-Multiply workload implements the standard O(n3)
algorithm for dense matrix multiplication which is ex-
cerpted in Figure 1. We observe a speedup of 33.6 for this
program (Figure 8a). Effective range analysis contributes
significantly to this speedup — with FullDynamicBound-
sChecks the speedup is about 8.8x over plain sequential
JavaScript (i.e., a speedup of 0.26x over the optimized case
which was 33x faster than sequential JavaScript). These dy-
namic bounds checks are also an impediment to vectoriza-
tion which the All-Opts case benefits significantly from. For
comparison we wrote a native version of this workload us-
ing C and OpenCL running on the CPU that uses the same
O(n3) algorithm. We observed that the River Trail program
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runs 0.97x as fast as this native OpenCL implementation
on 1024 x 1024 matrices. For this program, our compiler is
therefore able to generate code whose performance is on par
with native code.
Nbody implements an O(n2) simulation and animation of
particles that are moving through a force field and interact-
ing with each other gravitationally. Roughly 98% of the ex-
ecution time in each frame is spent computing positions and
velocities of the particles and these computations can be par-
allelized effectively resulting in a parallel speedup of 21.5
for these computations and a roughly equivalent improve-
ment in overall frame rate (Figure 8a). The impact of our
range analysis is particularly evident in this program — in
the FullDynamicBoundsChecks case the parallel speedup is
only 1.12 (Figure 8b). On the other hand speedup for the No-
DynamicBoundsChecks is roughly equal to the speedup for
All-Opts, i.e., our analysis is able to eliminate most of the
performance critical bounds checks.
Liquid-Resize implements content-aware image resizing
based on the algorithm in [3]. The portion of this program
parallelized using River Trail accounts for roughly 85% of
the total sequential execution time. The parallel speedup in
just the parallelized portion of the program is approximately
10.9 (Figure 8a) and the overall application speedup is 2.2
over sequential JavaScript execution. The speedups are not
significantly affected by lazy materialization.
Bugs is an interactive game in which players use gestures
to interact with and move bugs in a scene. This application
implements dense optical flow tracking using Farneback’s
method [12]. The parallel version of this method is imple-
mented with a chain of 10 relatively short, vectorizable ele-
mental functions that are invoked for each input frame. We
observe parallel a speedup of about 11.8 for the All-Opts
case. The chain of elemental functions produce and consume
large ParallelArray objects without intervening accesses in
sequential code. Therefore in this case lazy materialization
has a substantial impact on parallel performance — without
this optimization the speedup is roughly 4.5. Bounds check
elimination also has a big impact on speedup — parallel
speedup is improved by 2.6x (11.8x vs. 4.5x) compared to
FullDynamicBoundsChecks.
OctreeCollider is a physics engine that simulates collision
detection and dynamics on rigid meshes. Unlike TourDe-
Block which uses a brute force O(n2) broadphase for detect-
ing collisions, this application uses an octree-based scheme
to efficiently prune out non-colliding objects. Parallel exe-
cution for this program is 4.3 times faster than sequential
JavaScript and lazy materialization does not affect parallel
performance significantly. However performance with No-
DynamicBoundsChecks is significantly better than All-Opts.
The sole elemental function contains a while loop whose
termination condition is data-dependent. Moreover most ar-
ray selection operations within this loop use indices that are

also data-dependent. Range analysis is thus unable to resolve
bounds precisely.

It is important to note here, that, beyond just speeding up
applications, River Trail also acts as an enabler for new kinds
of applications. For instance, the NBody program runs at 2
frames/second in sequential JavaScript. With River Trail it
runs at around 43 frames per second — sufficiently fast for
a near real-time experience. Similarly the Bugs game runs
at less than 1 frame per second in sequential JavaScript.
With River Trail, it runs at about 12 frames per second
— sufficient performance for interactive play. The same is
true for Video-EdgeDetect and Video-Sharpen: Each runs
at around 4 frames/second sequentially whereas the parallel
versions run at around 21 frames/second, which is closer to
the original playback rate and is discernibly smoother.

Figure 10 shows the total cost in milliseconds of JIT-
compiling all the elemental functions invoked for each work-
load during parallel execution. The elemental functions in
Tour De Block and the OctreeCollider are both quite large
and consist of deeply nested loops. This is reflected in the
relatively large amount of time spent in Type Inference and
the time taken for Range Analysis to converge. However the
cost of JIT compilation is low relative to the application ex-
ecution time for most of the studied programs. Applications
that are particularly sensitive to the pauses due to JIT com-
pilation (for example TourDeBlock) are able to pre-compile
the elemental functions during page or application loading.
We observed that re-compilation (or re-specialization) is
rarely triggered (thereby avoiding “jitter” in an otherwise
smooth animation or video rendering for example).

4.3 Hybrid Execution
The River Trail runtime supports execution of kernels on
GPU devices transparently to the programmer and the com-
piler. The performance speedup due to hybrid execution for
NBody and Matrix-Multiply-1D from Table 1 are shown in
Figure 9 for various input sizes. The iteration space for a
ParallelArray operation is partitioned between the CPU and
GPU statically: CPUx-GPUy means that x% of the itera-
tion space is computed on the CPU and y% on the GPU.
CPU-only and GPU-only refer to computing the full itera-
tion space on CPU only and GPU only, respectively.

The parallel performance of NBody for 4000 bodies in-
creases as the portion of the iteration space offloaded to the
GPU in increased up to 75%. With GPU-only execution the
speedup is lower than with CPU25-GPU75. This can be at-
tributed to the significant amount of rendering that this pro-
gram performs on the GPU interleaved with computation.
When the problem size is scaled up, the amount of rendering
performed on the GPU also increases. The best performance
then is achieved instead with a 50-50% partitioning. We
also observe that the performance scales better with prob-
lem size on the GPU-only and hybrid configurations than on
the CPU-only configuration.
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Figure 9: Parallel speedup for (a) NBody (on the left) and (b) Matrix-Multiply (on the right) with hybrid execution relative
to sequential JavaScript execution. The Matrix-Multiply-1D program shown here uses a flattened 1D representation of the
matrices and is distinct from the 2D version in Table 2.

The plot on the right-hand side of Figure 9 shows the per-
formance of hybrid execution for Matrix-Multiply. This pro-
gram both performs better and scales better than the NBody
workload. We attribute this to two main reasons: Unlike
NBody, this program does not perform any rendering on
the GPU and the elemental function contains no significant
control flow divergence. The latter also makes it particu-
larly suitable for GPU execution: GPU-only configuration
produces the best speedups and performance decreases with
increased CPU utilization.

These experiments indicate the large number of factors
that influence the best partitioning for hybrid execution. In
addition, there is the overhead of spawning elemental func-
tions on a GPU device. To be effective, a hybrid execution or
partitioning scheme has to balance these considerations care-
fully to produce good results across a variety of workloads.
There has been a significant amount of exploration in this
area by other researchers (see [25] and references therein).

5. Related Work
Data-parallel programming is a well understood concept. It
has been extensively studied [5] and approaches have been
developed for a wide range of languages. However, to our
knowledge nobody so far has addressed JavaScript.

Most existing approaches (for example ArBB (C++) [22],
DpH (Haskell) [8], Lime (JAVA) [11], Firepile (Scala) [23],
Accelerator (.NET) [28], to name few) cover statically typed
languages that are compiled ahead-of-time. ASDP [25]
comes close by extending ActionScript, which is similar to
JavaScript but has type annotations. In their DSL, they map
a subset of those types to OpenCL without the need of type
inference. However, they do not support the dynamic Num-
ber type. Also, they use ahead-of-time compilation. Ikra [18]
implements ahead-of-time compilation of a subset of Ruby
to GPUs. Similar to our approach, the authors propose a new
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Figure 10: Breakdown of JIT compilation times for the
workloads in Table 1.

data type PArray and they also use code analysis to decide
whether an operation may run in parallel. However, their
system only supports map and inject (reduce) operations
and, while showing promising first results, is still in an early
stage of development. CopperHead [7] supports ahead-of-
time and just-in-time compilation of a subset of Python to
CUDA. Their work solves many of the challenges addressed
by our solution. However, their compiler is fundamentally
a static compiler. In particular, they do not specialize gen-
erated code to the extent a dynamic compiler like the one
presented here can.

WebCL [1] proposes an embedding of OpenCL into Java-
Script at the language rather than implementation level. Un-
like River Trail, it is targeted at limited usage scenarios that
allow for a violation of JavaScript security model, such as,
for example, natively installed HTML5 applications.
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Further related work can be found in the context of pro-
gramming models for deterministic parallelism. In the con-
text of statically typed languages, approaches like DPJ [6]
(Java) and CSOLVE [17] (C) have been proposed. Their
concurrency model is more general than ours. However,
they need program annotations to prove determinism. [19]
presents a concurrency model similar to ours that also al-
lows sibling threads read-only access to the parent’s state.
However, it is tailored towards task parallelism and uses ex-
plicit operations to encode sibling/sibling dependencies. The
latter cannot arise in our model.

Finally, we have discussed this and related work in earlier
publications. [13] is a position paper that argues for the need
of a parallel programming model for JavaScript. In [29],
we have presented materials that teach concurrency with the
help of River Trail. The design process, details of the imple-
mentation and results of our in depth performance evaluation
have not been published before.

6. Conclusion
We have reported on River Trail, a joint expedition of lan-
guage designers and web developers towards a parallel pro-
gramming API for JavaScript. During the design, we have
co-evolved the API and its implementation with new work-
loads and usage scenarios. The resulting API is tailored for
the needs of the web: it is safe and secure, builds on existing
developer knowledge and offers performance portability. We
have described our prototype implementation and outlined
the key techniques used to bring River Trail to multi-core
CPUs and GPUs. Our evaluation proves that significant per-
formance improvements up to an order of magnitude can be
achieved for realistic web applications.

Rapid prototyping of the compiler and runtime during
the different design iterations has proven very beneficial,
especially to collect early developer feedback. Yet, design
should ultimately lead to a finished product. To that effect,
we have proposed River Trail to the ECMAScript standards
committee to further evolve the API [15]. In parallel, we
are working jointly with Mozilla on a production quality
implementation.
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